# Survey Analysis IBM SPSS Statistics



# **1.Working with the Data and Variable**

## **Data View**

| File Edit  | View Data | Transform <u>A</u> nalyze <u>G</u> rap | ohs Utilities Ex | tensions Window Help |          |             |        |         |             |         |                  |          |
|------------|-----------|----------------------------------------|------------------|----------------------|----------|-------------|--------|---------|-------------|---------|------------------|----------|
|            |           |                                        |                  |                      |          |             |        |         |             |         |                  |          |
| 🦻 🕂        | 🖨 🛄       | 3                                      |                  |                      | e 💽 🔍    |             |        |         |             |         |                  |          |
| 24 : start | 07-Mar    |                                        |                  |                      |          |             |        |         |             |         | Visible: 22 of 2 | 22 Varia |
| (          | 🛷 id      | 💰 completed                            | a first_name     | 🚜 last_name          | 🗞 gender | 💰 dob       | 🗞 educ | 🗞 marit | 🔏 start     | 🗞 jtype | I whours         | 🛷 s      |
| 1          | 0001      | 20-Jan-2017 11:37:28 Ke                | vin Gar          | cia                  | 1        | 03-Oct-1993 |        | 2       | 07-May-2016 | 1       | 28.25            |          |
| 2          | 0002      | 21-Jan-2017 06:30:03 Ave               | den Carl         | er                   | 1        | 31-Oct-1996 | 4      | 1       | 27-Oct-2026 | 1       |                  |          |
| 3          | 0003      | 21-Jan-2017 16:35:48 Ma                | delyn Will       | ams                  | 0        | 13-Dec-1985 | 5      | 2       | 07-Nov-2008 | 1       | 22.75            |          |
| 4          | 0004      | 21-Jan-2017 17:37:33 Ma                | delyn Bak        | er                   | 0        | 10-Jun-1988 | 1      | 2       | 21-Feb-2011 |         | 27.25            |          |
| 5          | 0005      | 22-Jan-2017 12:04:23 Tris              | stan Heg         | andez                | 1        | 23-Dec-1995 | 3      | 2       | 01-Mar-2016 | 1       |                  |          |
| 6          | 0006      | 22-Jan-2017 13:05:0 Isa                | ac N             | 4)                   | 1        | 19-Apr-1996 | 6      | 2       | 08-Dec-2016 | 2       | 43.75            |          |
| 7          | 0007      | 22-Jan-2017 15:44:23 vic               | cona Can         |                      | 0        | 24-Apr-1989 | 2      | 2       | 09-Jun-2016 | 1       | 28.50            |          |
| 8          | 0008      | 23-Jan-2017 08:58:32 Chi               | ristopher Tay    | or                   | 1        | 30-Nov-1983 | 4      | 2       | 20-Apr-2005 | 3       | 160.00           |          |
| 9          | 0009      | 23-Jan-2017 13:37:00 Ca                | roline Tay       | or                   | 0        | 22-Aug-1981 | 3      | 1       | 13-Nov-2005 | 3       | 35.25            |          |
| 10         | 0010      | 23-Jan-2017 15:11:51 Da                | niel Clar        | k                    | 1        | 30-Mar-1995 | 3      | 3       | 24-Dec-2016 | 1       | 28.50            |          |
| 11         | 0011      | 23-Jan-2017 15:41:43 Sa                | muel Per         | Z                    | 1        | 09-Mar-1980 | 5      | 2       | 11-Mar-2012 | 4       | 49.00            |          |
| 12         | 0012      | 23-Jan-2017 16:02:12 Her               | nry Tho          | nas                  | 1        | 09-Jan-1992 | 4      | 1       | 10-Feb-2014 | 3       | 43.25            |          |
| 13         | 0013      | 23-Jan-2017 16:57:29 Bria              | anna Nels        | on                   | 0        | 22-Jan-1992 | 3      | 1       | 01-Mar-2012 | 3       | 39.00            |          |
| 14         | 0014      | 24-Jan-2017 09:38:08 Ay                | den Sco          | tt                   | 1        | 24-Mar-1986 | 4      | 1       | 15-Nov-2009 | 3       | 33.00            |          |
| 15         | 0015      | 24-Jan-2017 15:01:12 Ave               | ery Mod          | re                   | 0        | 06-Dec-1988 | 2      | 1       | 14-May-2014 | 2       | 33.50            |          |
| 16         | 0016      | 24-Jan-2017 21:30:59 Eva               | an You           | ng                   | 1        | 11-Sep-1992 | 4      | 2       | 11-Aug-2016 | 1       | 33.25            |          |
| 17         | 0017      | 25-Jan-2017 11:29:10 Gia               | anna Gre         | en                   | 0        | 06-Oct-1986 | 4      | 1       | 26-Jul-2016 | 2       | 27.75            |          |
| 18         | 0018      | 25-Jan-2017 11:36:51 Ga                | briella Cart     | er                   | 0        | 04-Jul-1990 |        | 1       | 15-Dec-2014 | 2       | 33.00            |          |
| 19         | 0019      | 25-Jan-2017 16:07:27 Chl               | loe Clar         | k                    | 0        | 14-Sep-1995 | 4      | 1       | 12-Dec-2015 | 1       | 180.00           |          |
| 20         | 0020      | 25-Jan-2017 16:41:13 Gia               | anna Jon         | S                    | 0        | 13-May-1992 | 4      | 3       | 09-Oct-2013 | 6       | 26.25            |          |
| 21         | 0021      | 25-Jan-2017 17:14:21 Cla               | aire King        |                      | 0        | 26-Feb-1988 | 3      | 3       | 22-Jul-2011 | 1       | 27.00            |          |
| 22         | 0022      | 25-Jan-2017 20:01:05 Hai               | iley Coll        | ns                   | 0        | 24-Oct-1995 | 3      | 1       | 21-Mar-2045 | 1       | 29.50            |          |
| 23         | 0023      | 26-Jan-2017 05:36:12 Isa               | ac Ada           | ms                   | 1        | 16-Mar-1981 | 5      | 2       | 17-Apr-2008 | 2       | 31.75            |          |
| 24         | 0024      | 26-Jan-2017 08:21:35 Ale               | exa Can          | pbell                | 0        | 25-Feb-1959 | 6      | 3       | 07-Mar-1983 | 3       | 24.25            |          |
| 25         | 0025      | 26-Jan-2017 08:47:30 Wy                |                  | inez                 | 1        | 13-Mar-1972 | 5      | 4       | 09-Dec-2012 | 3       | 32.00            |          |
| 26         | 0026      | 26-Jan-2017 12:43:18 Ha                | rper Rob         | erts                 | 0        | 05-Feb-1993 | 3      | 3       | 27-Nov-2014 | 1       | 21.50            |          |
| 27         | 0027      | 26-Jan-2017 13:45:03 Hai               | iley Edw         | ards                 | 0        | 08-Dec-1991 | 4      | 2       | 10-Sep-2016 | 1       | 30.25            |          |
| 28         | 0028      | 26-Jan-2017 14:54:21 Jos               | shua Smi         | th                   | 1        | 17-Nov-1980 | 3      | 3       | 09-Nov-2004 | 1       | 30.50            |          |
| 29         | 0029      | 26-Jan-2017 15:29:28 Elli              | ie And           | erson                | 0        | 30-Dec-1988 | 3      | 1       | 17-Jan-2015 | 1       | 26.00            |          |

1

(2)

3

(4)

**tabs** for switching between Data View and Variable View

Columns of cells are called variables.

Rows of cells are called observation

values refer to cell contents

Data View Variable View

(1)

## **Variable View**

| <u>E</u> dit | <u>V</u> iew <u>D</u> ata | a <u>T</u> ransform | <u>A</u> nalyze | <u>G</u> raphs | <u>U</u> tilities E <u>x</u> tensions | <u>W</u> indow <u>H</u> elp |                             |         |         |           |                |         |  |
|--------------|---------------------------|---------------------|-----------------|----------------|---------------------------------------|-----------------------------|-----------------------------|---------|---------|-----------|----------------|---------|--|
| H            |                           | <b>r</b> 3          | ¥ 🎇             | *==            | · · · · · ·                           | 🗮 📑 🏠 💽                     | Q                           |         |         |           |                |         |  |
|              | Name                      | Туре                | Width           | Decimals       |                                       | Label                       | Values                      | Missing | Columns | Align     | Measure        | Role    |  |
| 1            | id                        | Restricted          | 4               | 0              | Questionnaire identifier              |                             | None                        | None    | 9       | 🗏 Right   | 📲 Ordinal      | 🔪 Input |  |
| 2            | completed                 | Date                | 22              | 0              | Date and time that ques               | stionnaire was completed    | None                        | None    | 17      | I Right   | I Scale        | 🖒 Input |  |
| 3            | first_name                | String              | 11              | 0              |                                       |                             | None                        | None    | 11      | 📰 Left    | 💑 Nominal      | 🖒 Input |  |
| 4            | last_name                 | String              | 30              | 0              |                                       |                             | None                        | None    | 26      | 📰 Left    | \delta Nominal | 🖒 Input |  |
| 5            | gender                    | Numeric             | 1               | 0              |                                       |                             | {0, female}                 | None    | 10      | ■ Right   | 💑 Nominal      | 🖒 Input |  |
| 6            | dob                       | Date                | 11              | 0              | Date of birth                         |                             | None                        | None    | 11      | I Right   | 🛷 Scale        | 🔪 Input |  |
| 7            | educ                      | Numeric             | 1               | 0              | Highest completed edu                 | cation level                | {1, Middle school or lower} | None    | 10      | 疆 Right   | 💑 Nominal      | 🔪 Input |  |
| 8            | marit                     | Numeric             | 1               | 0              | Marital status                        |                             | {1, never married}          | None    | 10      | 疆 Right   | 🗞 Nominal      | 🦒 Input |  |
| 9            | start                     | Date                | 11              | 0              | Date of enrollment in co              | ompany                      | None                        | None    | 11      | 疆 Right   | 🛷 Scale        | 🔪 Input |  |
| 10           | jtype                     | Numeric             | 1               | 0              | Current job type                      |                             | {1, Sales}                  | None    | 10      | 疆 Right   | \delta Nominal | 🔪 Input |  |
| 11           | whours                    | Numeric             | 8               | 2              | On average, how many                  | hours do you work per week? | None                        | None    | 15      | 🚟 Right   | 🛷 Scale        | 🔪 Input |  |
| 12           | salary                    | Dollar              | 8               | 0              | Gross monthly salary                  |                             | None                        | None    | 10      | 🗮 Right   | 🛷 Scale        | 🔪 Input |  |
| 13           | overall                   | Numeric             | 1               | 0              | I'm happy with my job                 |                             | {1, Totally disagree}       | None    | 10      | 🗏 Right   | \delta Nominal | 🔪 Input |  |
| 14           | q1                        | Numeric             | 1               | 0              | This company takes go                 | od care of its employees.   | {1, Totally disagree}       | None    | 10      | 🗮 Right   | 💑 Nominal      | 🔪 Input |  |
| 15           | q2                        | Numeric             | 1               | 0              | This company supports                 | me in my work.              | {1, Totally disagree}       | None    | 10      | I Right   | \delta Nominal | 🔪 Input |  |
| 16           | q3                        | Numeric             | 1               | 0              | My daily tasks are inter              | esting.                     | {1, Totally disagree}       | None    | 10      | 🗃 Right   | \delta Nominal | 🔪 Input |  |
| 17           | q4                        | Numeric             | 1               | 0              | I like my colleagues.                 |                             | {1, Totally disagree}       | None    | 10      | ) I Right | \delta Nominal | 🔪 Input |  |
| 18           | q5                        | Numeric             | 1               | 0              | My workspace is good.                 |                             | {1, Totally disagree}       | None    | 10      | 🗃 Right   | \delta Nominal | 🔪 Input |  |
| 19           | q6                        | Numeric             | 1               | 0              | My salary is good.                    |                             | {1, Totally disagree}       | None    | 10      | 疆 Right   | \delta Nominal | 🔪 Input |  |
| 20           | q7                        | Numeric             | 1               | 0              | My secondary labor cor                | nditions are good.          | {1, Totally disagree}       | None    | 10      | 疆 Right   | \delta Nominal | 🔪 Input |  |
| 21           | q8                        | Numeric             | 1               | 0              | My work is meaningful.                |                             | {1, Totally disagree}       | None    | 10      | 疆 Right   | \delta Nominal | 🔪 Input |  |
| 22           | q9                        | Numeric             | 1               | 0              | The cooperation with m                | y colleagues is good.       | {1, Totally disagree}       | None    | 10      | Right     | 💰 Nominal      | > Input |  |
| 23           |                           |                     |                 |                |                                       |                             |                             |         |         | _         |                |         |  |
| 24           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |
| 25           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |
| 26           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |
| 27           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |
| 28           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |
| 29           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |
| 30           |                           |                     |                 |                |                                       |                             |                             |         |         |           |                |         |  |

Data View Variable View

# **The Process of Survey Analysis**



# 2. Basic Data Checking With Codebook



# 2.1 Codebook

### Data : "GSS2008.SAV"

## Analyze >> Reports >> CodeBook

 $\times$ 

Variables Output Statistics

#### Variables:

ta Codebook

GSS YEAR FOR THIS RESPONDENT ...
RESPONDNT ID NUMBER ....
MARITAL STATUS [marital]
AGE OF RESPONDENT [age]
RS AGE WHEN 1ST CHILD BORN [ag....
RACE OF RESPONDENT [race]
WAS R BORN IN THIS COUNTRY [born]
DID R VOTE IN 2004 ELECTION [vote04]
GENERAL HAPPINESS [happy]
HAPPINESS OF MARRIAGE [hapmar]
CONFIDENCE IN CONGRESS [conlegis]
CONFIDENCE IN MILITARY [conarmy]
HOURS PER DAY WATCHING TV [tvho...
AGE OF RESPONDENT (Binned) [Group]
AGE OF RESPONDENT (Binned) [newg...

#### Codebook Variables:

NUMBER OF CHILDREN [childs]
 HIGHEST YEAR OF SCHOOL COMPL...
 RESPONDENTS SEX [sex]

|                      |                    | Value                 |
|----------------------|--------------------|-----------------------|
| Standard Attributes  | Position           | 4                     |
|                      | Label              | NUMBER OF<br>CHILDREN |
|                      | Туре               | Numeric               |
|                      | Format             | F1                    |
|                      | Measurement        | Scale                 |
|                      | Role               | Input                 |
| N                    | Valid              | 2020                  |
|                      | Missing            | 3                     |
| Central Tendency and | Mean               | 1.94                  |
| Dispersion           | Standard Deviation | 1.698                 |
|                      | Percentile 25      | .00                   |
|                      | Percentile 50      | 2.00                  |
|                      | Percentile 75      | 3.00                  |

#### sex

|                     |             | Value               | Count | Percent |
|---------------------|-------------|---------------------|-------|---------|
| Standard Attributes | Position    | 8                   |       |         |
|                     | Label       | RESPONDEN<br>TS SEX |       |         |
|                     | Туре        | Numeric             |       |         |
|                     | Format      | F1                  |       |         |
|                     | Measurement | Nominal             |       |         |
|                     | Role        | Input               |       |         |
| Valid Values        | 1           | MALE                | 929   | 45.9%   |
|                     | 2           | FEMALE              | 1094  | 54.1%   |

#### childs

# **2.2 Using Frequencies to Check Data**

## Analyze >> Descriptive >> Frequencies

#### 🝓 Frequencies



#### Frequencies

×

| Statistics |                                |     |  |  |  |  |
|------------|--------------------------------|-----|--|--|--|--|
| How f      | How frequently do you use SPSS |     |  |  |  |  |
| N          | Valid                          | 825 |  |  |  |  |
|            | Missing                        | 130 |  |  |  |  |

#### How frequently do you use SPSS

|         |                                   | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|-----------------------------------|-----------|---------|---------------|-----------------------|
| Valid   | Don't use very much at all        | 85        | 8.9     | 10.3          | 10.3                  |
|         | Only for special projects         | 95        | 9.9     | 11.5          | 21.8                  |
|         | Monthly                           | 160       | 16.8    | 19.4          | 41.2                  |
|         | Weekly                            | 120       | 12.6    | 14.5          | 55.8                  |
|         | Daily/multiple times in a<br>week | 250       | 26.2    | 30.3          | 86.1                  |
|         | Multiple times in a day           | 115       | 12.0    | 13.9          | 100.0                 |
|         | Total                             | 825       | 86.4    | 100.0         |                       |
| Missing | Quarterly                         | 115       | 12.0    |               |                       |
|         | System                            | 15        | 1.6     |               |                       |
|         | Total                             | 130       | 13.6    |               |                       |
| Total   |                                   | 955       | 100.0   |               |                       |

# **2.3 Data Validation**

## Data >> Validation >> Validate Data

#### Select Variables talidate Data Variables Basic Checks Single-Variable Rules Cross-Variable Rules Output Save Analysis Variables: Variables: SS YEAR FOR THIS RESPONDEN. GENERAL HAPPINESS [happy] RESPONDNT ID NUMBER HAPPINESS OF MARRIAGE [hapmar] MARITAL STATUS [marital] NUMBER OF CHILDREN [childs] AGE OF RESPONDENT [age] • R'S AGE WHEN 1ST CHILD BORN [... HIGHEST YEAR OF SCHOOL COMP... RESPONDENTS SEX [sex] RACE OF RESPONDENT [race] 💑 WAS R BORN IN THIS COUNTRY [b.. DID R VOTE IN 2004 ELECTION [vote... CONFIDENCE IN CONGRESS [conle. Case Identifier Variables: CONFIDENCE IN MILITARY [conarmy] HOURS PER DAY WATCHING TV [tv... AGE OF RESPONDENT (Binned) [Gr... AGE OF RESPONDENT (Binned) [ne... •

#### Identify Basic Checks Validate Data Variables Basic Checks Single-Variable Rules Cross-Variable Rules Output Save Analysis Variables Flag variables that fail any of the following checks Maximum percentage of missing values: 70 (Applies to all variables) (Applies to categorical variables only) Maximum percentage of cases in a single category: 95 Maximum percentage of categories with count of 1: 90 (Applies to categorical variables only) Minimum coefficient of variation: (Applies to scale variables only) Minimum standard deviation: (Applies to scale variables only) Case Identifiers Flag incomplete IDs Flag duplicate IDs Flag empty cases Define Cases By: All variables in dataset except ID variables Y

A case is considered empty if all relevant variables are missing or blank.



| talidate Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tailidate Data: Define Validation Rules      |                                                                                           |                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Variables       Basic Checks       Single-Variable Rules       Cross-Variable Rules       Out         To apply rules to a variable, select the variable then check one or more rules.       The Analysis Variables list shows distributions of nonmissing values based on a second be applied to selected variables.       Analysis Variables:         Analysis Variables:       Variable       Distribution       Minimum       Maximum       Rules       Image: Comparison of the selected variables is the selected variable is the selected va |                                              | Single-Variable Rules          Rules:         Name       Type         Level       Numeric | Rule Definition   Name: Level   Lormat:   mm/dd/yyyy     Values:   In a list   Values:   1   2   3   3   2   3   2   3 |  |  |
| Display:       All variables       ✓       Cases Scanned: 2023         Variable Distributions       ✓       Limit number of cases scanned       Cases:       5000       Rescan       Limiting the rescanses are variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | number of cases scanned does not<br>lidated. | Define Rules                                                                              |                                                                                                                        |  |  |
| OK Paste Reset Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Help                                         |                                                                                           |                                                                                                                        |  |  |

# **Exclude Incorrect Value**



# 2.4 Variable Binning

## Graphs >> Chart Builder



### Data : "GSS2008.SAV"

## Transform >> Visual Binning

ta Visual Binning

 $\times$ Select the variables whose values will be grouped into bins. Data will be scanned (i when you click Continue. 🔗 age The Variables list below contains all numeric ordinal and scale variables. Variables: Variables to Bin: 🔗 age agecmeus 🛷 agekdbrn 🛷 bornsp 🔗 cohort Solscinm Solution of the second 🔗 dateintv 🔗 denkid • 🔗 denom 🖋 denom16 🔗 densp 🔗 emphplan 🔗 eth1 🔗 eth2 Seth3 🖋 ethnic ~ Limit number of cases scanned to: Cancel Help Continue

#### ta Visual Binning Scanned Variable List: Name: Label: AGE OF RESPONDENT Current Variable: age Binned Variable: AGE OF RESPONDENT (Binned) Minimum: 18 Nonmissing Values Maximum: 89 37 62.84 59.11 P 18.00 25.47 21.74 32.95 40.42 47.89 55.37 36.68 44.16 51.63 4 70.32 77.79 85.26 66.58 74.05 81.53 8 ໌ 29.21 ໌ 89.00 Enter interval cutpoints or click Make Cutpoints for automatic intervals. A cutpoint value of 10, for (i) example, defines an interval starting above the previous interval and ending at 10. Grid: Upper Endpoints Value Label Cases Scanned: 2023 HIGH Included (<=)</p> 2 Missing Values: 10 O Excluded (<) Copy Bins Make Cutpoints. Make Labels Reverse scale

Help Paste | Reset Cancel OK

Х

# **Make Cut points**

#### Make Cutpoints

 $\times$ 

#### ● Equal Width Intervals

Intervals - fill in at least two fields

First Cutpoint Location: 29

Number of Cutpoints:

Width:



Last Cutpoint Location: 79

#### O Equal Percentiles Based on Scanned Cases

| Intervals - fill in either | ld |
|----------------------------|----|
| Number of Cutpoints:       |    |
| <u>W</u> idth(%):          |    |
|                            |    |

O Cutpoints at Mean and Selected Standard Deviations Based on Scanned Cases

- +/- 1 Std. Deviation
- +/- 2 Std. Deviation

+/- 3 Std. Deviation

Apply will replace the current cutpoint definitions with this specification. A final interval will include all remaining values: N cutpoints produce N+1 intervals.

### **Equal width Interval**

### **Equal percentile intervals**

### Mean and standard deviation interval





# **3. Reliability Analysis**

Measure of the consistency of a measurement overtime

"with questions about the performance of sales reps for SPSS software, if reliability is high, respondents who strongly agree that the sale rep understand their business are also likely to agree that the sales rep understand their computing environment"

**Cronbach's Alpha :** varies from 0 to 1

## Analyze >> Scale >> Reliability Analysis

| Data : "SPSS_CUST.SAV"                                                        |                                       |            | 🙀 Reliability Analysis: Statistics        | ×                              |
|-------------------------------------------------------------------------------|---------------------------------------|------------|-------------------------------------------|--------------------------------|
|                                                                               |                                       |            | Descriptives for                          | Inter-Item                     |
| 🕼 Reliability Analysis                                                        |                                       | ×          | ✓ <u>I</u> tem                            | Correlations                   |
|                                                                               |                                       | ^          | ✓ Scale                                   | Covariances                    |
|                                                                               | ltems:                                | Statistics | ✓ Scale if item deleted                   |                                |
| 🚽 SPSS s/w has stat procs needed [sta 🛆                                       | 📶 Sales rep undrstnds my stat data an | al n       |                                           |                                |
| SPSS prods are easy to learn [easylrn]                                        | Sales rep undrstnds computng envm     | •          | Summaries                                 | ANOVA Table                    |
| SPSS prods are easy to use [easyuse]                                          | Sales rep undrstands your business/   | -          | ✓ Means                                   | None                           |
| SPSS prods are updated freqntly [upd<br>Am satisfd w/receivd info on new prod | Sales rep relates prods to my needs   | [rep       |                                           | O <u>F</u> test                |
| SPSS products are priced right [gdprice]                                      |                                       |            |                                           | _                              |
| SPSS'licensing terms are flexible [lice                                       |                                       |            | Covariances                               | O Friedman chi-s <u>q</u> uare |
| SPSS shipments receivd whn promisd                                            |                                       |            | Correlations                              | ○ Coc <u>h</u> ran chi-square  |
| SPSS shipments are correct & compl                                            |                                       |            |                                           |                                |
| Am satisfied w/SPSScommn about pr                                             |                                       |            | Interrater Agreement: Fleiss' Kappa       |                                |
| Spoken w/SPSS sales rep w/in past y                                           | R <u>a</u> tings:                     |            | Display agreement on individual car       | tegories                       |
| Sales dept returns my calls promptly [                                        |                                       |            | Ignore string cases                       |                                |
| Sales rep undrstnds my stat data anal                                         |                                       |            | String category labels are disp           | aved in uppercase              |
| Sales rep undrstnds computing envint Sales rep undrstands your business/o     |                                       |            |                                           |                                |
| Sales rep relates prods to my needs [r                                        |                                       |            | Asymptotic significance level (%): 95     |                                |
| Sales rep informs about all prods & sr                                        |                                       |            | Missing                                   |                                |
| Sales rep treats customer w/courtesy                                          | ★                                     |            | Exclude <u>b</u> oth user-missing and sys | tem missing values             |
| 🚽 Sales rep gives info in right amt of tim                                    |                                       |            | O User-missing values are treated as      | -                              |
| Ever called SPSS for tech supprt? [te                                         |                                       |            | O Oser-Inissing values are treated as     | Valid                          |
| Satisfied w/tech support [techsat]                                            |                                       |            | Hotelling's T-square                      | Tukey's test of additivity     |
|                                                                               |                                       |            | Intraclass correlation coefficient        |                                |
| Model: Alpha                                                                  |                                       |            |                                           | T                              |
| Scale label:                                                                  |                                       |            | Mo <u>d</u> el: Two-Way Mixed             | Type: Consistency              |
|                                                                               |                                       |            | Confidence interval: 95 %                 | Test val <u>u</u> e: 0         |

 $\times$ 

### Item Statistics

|       |                                                                             |   |                                                | Mean | Std. Deviation | N   |
|-------|-----------------------------------------------------------------------------|---|------------------------------------------------|------|----------------|-----|
| Relia | ability Statistic                                                           | S | Sales rep undrstnds my<br>stat data anal needs | 2.30 | .878           | 500 |
|       | Cronbach's<br>Alpha Based<br>on<br>Cronbach's Standardized<br>Alpha Items N |   | Sales rep undrstnds<br>computng envmt          | 2.35 | 1.082          | 500 |
|       |                                                                             |   | Sales rep undrstands<br>your business/organ    | 2.55 | 1.034          | 500 |
| Alpha | items                                                                       |   | Sales rep relates prods                        | 2.63 | 1.056          | 500 |
| .886  | .889                                                                        | 4 | to my needs                                    |      |                |     |

### Item-Total Statistics

|                                             | Scale Mean if<br>Item Deleted | Scale<br>Variance if<br>Item Deleted | Corrected<br>Item-Total<br>Correlation | Squared<br>Multiple<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
|---------------------------------------------|-------------------------------|--------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|
| Sales rep undrstnds my stat data anal needs | 7.53                          | 7.644                                | .797                                   | .642                               | .842                                   |
| Sales rep undrstnds<br>computng envmt       | 7.48                          | 7.104                                | .696                                   | .527                               | .876                                   |
| Sales rep undrstands<br>your business/organ | 7.28                          | 6.895                                | .795                                   | .634                               | .835                                   |
| Sales rep relates prods<br>to my needs      | 7.20                          | 7.054                                | .734                                   | .599                               | .860                                   |

# 4. Analyzing Categorical Data



 Crosstabs are commonly used to explore how demographic characteristics are related to attitudes and behaviors



Use to study the relationships between two, or more categorical variables

## Analyze >> Descriptive >> Crosstabs



Suppress tables

Cells

Х

#### 🔚 Crosstabs: Cell Display

| Counts                          | z-test                              |
|---------------------------------|-------------------------------------|
| ✓ Observed                      | Compare column proportions          |
| <u>Expected</u>                 | Adjust p-values (Bonferroni method) |
| Hide small counts               |                                     |
| Less than 5                     |                                     |
| Percentages                     | Residuals                           |
| <u> R</u> ow                    | <u>U</u> nstandardized              |
| ✓ Column                        | <u>S</u> tandardized                |
| <u>T</u> otal                   | <u>A</u> djusted standardized       |
| Create APA style table          |                                     |
| Noninteger Weights              |                                     |
| Round cell counts               | ○ Round case <u>w</u> eights        |
| O Truncate ce <u>l</u> l counts | O Truncate case weig <u>h</u> ts    |
| O No adjustments                |                                     |

#### HAPPINESS OF MARRIAGE \* GENERAL HAPPINESS Crosstabulation

|              |               |                                   | GEI        | VERAL HAPPINE   | SS               |        |
|--------------|---------------|-----------------------------------|------------|-----------------|------------------|--------|
|              |               |                                   | VERY HAPPY | PRETTY<br>HAPPY | NOT TOO<br>HAPPY | Total  |
| HAPPINESS OF | VERY HAPPY    | Count                             | 356        | 215             | 24               | 595    |
| MARRIAGE     |               | % within HAPPINESS OF<br>MARRIAGE | 59.8%      | 36.1%           | 4.0%             | 100.0% |
|              |               | % within GENERAL<br>HAPPINESS     | 89.4%      | 43.9%           | 29.6%            | 61.4%  |
|              | PRETTY HAPPY  | Count                             | 40         | 259             | 44               | 343    |
|              |               | % within HAPPINESS OF<br>MARRIAGE | 11.7%      | 75.5%           | 12.8%            | 100.0% |
|              |               | % within GENERAL<br>HAPPINESS     | 10.1%      | 52.9%           | 54.3%            | 35.4%  |
|              | NOT TOO HAPPY | Count                             | 2          | 15              | 13               | 30     |
|              |               | % within HAPPINESS OF<br>MARRIAGE | 6.7%       | 50.0%           | 43.3%            | 100.0% |
|              |               | % within GENERAL<br>HAPPINESS     | 0.5%       | 3.1%            | 16.0%            | 3.1%   |
|              | DK            | Count                             | 0          | 1               | 0                | 1      |
|              |               | % within HAPPINESS OF<br>MARRIAGE | 0.0%       | 100.0%          | 0.0%             | 100.0% |
|              |               | % within GENERAL<br>HAPPINESS     | 0.0%       | 0.2%            | 0.0%             | 0.1%   |
| Total        |               | Count                             | 398        | 490             | 81               | 969    |
|              |               | % within HAPPINESS OF<br>MARRIAGE | 41.1%      | 50.6%           | 8.4%             | 100.0% |
|              |               | % within GENERAL<br>HAPPINESS     | 100.0%     | 100.0%          | 100.0%           | 100.0% |

# **Testing Relationships for Categorical Data**

## Analyze >> Descriptive >> Crosstabs



### Statistics >> Chi-square Crosstabs: Statistics X Chi-square Correlations Nominal Ordinal Contingency coefficient Gamma Phi and Cramer's V Somers' d Lambda Kendall's tau-b Uncertainty coefficient Kendall's tau-c Nominal by Interval Kappa Eta Risk McNemar Cochran's and Mantel-Haenszel statistics Test common odds ratio equals: 1

Suppress tables

### Chi-Square Tests

|                                 | Value                | df | Asymptotic<br>Significance<br>(2-sided) |
|---------------------------------|----------------------|----|-----------------------------------------|
| Pearson Chi-Square              | 159.200 <sup>a</sup> | 12 | .000                                    |
| Likelihood Ratio                | 161.952              | 12 | .000                                    |
| Linear-by-Linear<br>Association | 113.242              | 1  | .000                                    |
| N of Valid Cases                | 2012                 |    |                                         |

a. 5 cells (25.0%) have expected count less than 5. The minimum expected count is .07.

#### GENERAL HAPPINESS \* MARITAL STATUS Crosstabulation

|                   |               |                               |         |         | MARITAL STA | TUS       |                  |        |
|-------------------|---------------|-------------------------------|---------|---------|-------------|-----------|------------------|--------|
|                   |               |                               | MARRIED | WIDOWED | DIVORCED    | SEPARATED | NEVER<br>MARRIED | Total  |
| GENERAL HAPPINESS | VERY HAPPY    | Count                         | 398     | 31      | 56          | 11        | 101              | 597    |
|                   |               | % within GENERAL<br>HAPPINESS | 66.7%   | 5.2%    | 9.4%        | 1.8%      | 16.9%            | 100.0% |
|                   | PRETTY HAPPY  | Count                         | 490     | 95      | 169         | 41        | 304              | 1099   |
|                   |               | % within GENERAL<br>HAPPINESS | 44.6%   | 8.6%    | 15.4%       | 3.7%      | 27.7%            | 100.0% |
|                   | NOT TOO HAPPY | Count                         | 81      | 37      | 55          | 18        | 123              | 314    |
|                   |               | % within GENERAL<br>HAPPINESS | 25.8%   | 11.8%   | 17.5%       | 5.7%      | 39.2%            | 100.0% |
|                   | DK            | Count                         | 0       | 1       | 0           | 0         | 1                | 2      |
|                   |               | % within GENERAL<br>HAPPINESS | 0.0%    | 50.0%   | 0.0%        | 0.0%      | 50.0%            | 100.0% |
| Total             |               | Count                         | 969     | 164     | 280         | 70        | 529              | 2012   |
|                   |               | % within GENERAL<br>HAPPINESS | 48.2%   | 8.2%    | 13.9%       | 3.5%      | 26.3%            | 100.0% |

# **5. Analysis of Variance**

Univariate analysis of variance to test for mean difference

# **Business context**

When we examine mean difference between three or more group, we would like to know whether relationship we observe is likely to exist on our target population or instead is caused by random sampling variation.

 Statistical testing tells us whether the mean of an outcome variable is different or statistically the same in several categories of interest, e.g., customer type. Without that, we might make decision based on observed mean difference that are not likely to exist in population of customers,

### Analyze >> Compare Mean >> One-Way ANOVA

### Data : "SPSS\_CUST.SAV"

Am a satisfied SPSS customer

#### Descriptives



|                 |     |      |                |            | 95% Confidence Interval for<br>Mean |             |         |         |
|-----------------|-----|------|----------------|------------|-------------------------------------|-------------|---------|---------|
|                 | Ν   | Mean | Std. Deviation | Std. Error | Lower Bound                         | Upper Bound | Minimum | Maximum |
| LT 1 yr         | 115 | 2.83 | .920           | .086       | 2.66                                | 3.00        | 1       | 5       |
| 1 yr-3 yrs      | 235 | 2.64 | .911           | .059       | 2.52                                | 2.76        | 1       | 4       |
| GT 3 yrs-5 yrs  | 95  | 2.47 | .885           | .091       | 2.29                                | 2.65        | 1       | 4       |
| GT 5 yrs-10 yrs | 175 | 2.37 | 1.047          | .079       | 2.22                                | 2.53        | 1       | 5       |
| GT 10 yrs       | 295 | 2.53 | 1.016          | .059       | 2.41                                | 2.64        | 1       | 5       |
| Total           | 915 | 2.56 | .979           | .032       | 2.49                                | 2.62        | 1       | 5       |

#### ANOVA

| Am a satisfied SPSS customer |                   |     |             |       |      |  |  |  |
|------------------------------|-------------------|-----|-------------|-------|------|--|--|--|
|                              | Sum of<br>Squares | df  | Mean Square | F     | Sig. |  |  |  |
| Between Groups               | 16.860            | 4   | 4.215       | 4.466 | .001 |  |  |  |
| Within Groups                | 858.878           | 910 | .944        |       |      |  |  |  |
| Total                        | 875.738           | 914 |             |       |      |  |  |  |

### Dependent Am a satisfied SPSS customer [satcus]

Factor How long have you used SPSS products? [usespss]

## **Post Hoc Multiple Comparison**

🔚 One-Way ANOVA: Post Hoc Multiple Comparisons

Equal Varianaaa Assumed

| Equal valiances A | asumeu                |                                                                      |
|-------------------|-----------------------|----------------------------------------------------------------------|
| LSD               | <u>S-N-K</u>          | <u>W</u> aller-Duncan                                                |
| Bonferroni        | <u>T</u> ukey         | Type I/Type II Error Ratio: 100                                      |
| Sidak             | Tu <u>k</u> ey's-b    | Dunn <u>e</u> tt                                                     |
| Scheffe           | Duncan                | Control Category : Last                                              |
| B-E-G-W F         | <u>H</u> ochberg's GT | 2 Test                                                               |
| R-E-G-W Q         | <u>G</u> abriel       | $\bigcirc$ <u>2</u> -sided $\bigcirc$ < Control $\bigcirc$ > Control |

Equal Variances Not Assumed Tamhane's T2 Dunnett's T<u>3</u> G<u>a</u>mes-Howell D<u>u</u>nnett's C

Null Hypothesis test

• Use the same significance level [alpha] as the setting in Options

O Specify the significance level [alpha] for the post hoc test

Level: 0.05

## **Equality of Error Variances**

 $\times$ 

## Option >> Homogeneity of variance test

#### Levene's Test of Equality of Error Variances<sup>a,b</sup>

|                     |                                      | Levene<br>Statistic | df1 | df2     | Sig. |
|---------------------|--------------------------------------|---------------------|-----|---------|------|
| Am a satisfied SPSS | Based on Mean                        | 2.715               | 4   | 910     | .029 |
| customer            | Based on Median                      | 2.399               | 4   | 910     | .049 |
|                     | Based on Median and with adjusted df | 2.399               | 4   | 894.925 | .049 |
|                     | Based on trimmed mean                | 2.515               | 4   | 910     | .040 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Dependent variable: Am a satisfied SPSS customer

b. Design: Intercept + usespss

## Does the satisfaction vary according to the time of use?

#### Multiple Comparisons

Dependent Variable: Am a satisfied SPSS customer

Games-Howell

|                                              |                                              | Mean<br>Difference (l- |            |      | 95% Confidence Interval |             |  |
|----------------------------------------------|----------------------------------------------|------------------------|------------|------|-------------------------|-------------|--|
| (I) How long have you<br>used SPSS products? | (J) How long have you<br>used SPSS products? | J)                     | Std. Error | Sig. | Lower Bound             | Upper Bound |  |
| LT 1 yr                                      | 1 yr-3 yrs                                   | .19                    | .104       | .377 | 10                      | .47         |  |
|                                              | GT 3 yrs-5 yrs                               | .35                    | .125       | .042 | .01                     | .70         |  |
|                                              | GT 5 yrs-10 yrs                              | .45                    | .117       | .001 | .13                     | .78         |  |
|                                              | GT 10 yrs                                    | .30 <sup>*</sup>       | .104       | .035 | .01                     | .59         |  |
| 1 yr-3 yrs                                   | LT 1 yr                                      | 19                     | .104       | .377 | 47                      | .10         |  |
|                                              | GT 3 yrs-5 yrs                               | .16                    | .109       | .553 | 13                      | .46         |  |
|                                              | GT 5 yrs-10 yrs                              | .27                    | .099       | .057 | .00                     | .54         |  |
|                                              | GT 10 yrs                                    | .11                    | .084       | .663 | 12                      | .34         |  |
| GT 3 yrs-5 yrs                               | LT 1 yr                                      | 35                     | .125       | .042 | 70                      | 01          |  |
|                                              | 1 yr-3 yrs                                   | 16                     | .109       | .553 | 46                      | .13         |  |
|                                              | GT 5 yrs-10 yrs                              | .10                    | .120       | .915 | 23                      | .43         |  |
|                                              | GT 10 yrs                                    | 05                     | .108       | .989 | 35                      | .25         |  |
| GT 5 yrs-10 yrs                              | LT 1 yr                                      | 45                     | .117       | .001 | 78                      | 13          |  |
|                                              | 1 yr-3 yrs                                   | 27                     | .099       | .057 | 54                      | .00         |  |
|                                              | GT 3 yrs-5 yrs                               | 10                     | .120       | .915 | 43                      | .23         |  |
|                                              | GT 10 yrs                                    | 15                     | .099       | .525 | 42                      | .12         |  |
| GT 10 yrs                                    | LT 1 yr                                      | 30*                    | .104       | .035 | 59                      | 01          |  |
|                                              | 1 yr-3 yrs                                   | 11                     | .084       | .663 | 34                      | .12         |  |
|                                              | GT 3 yrs-5 yrs                               | .05                    | .108       | .989 | 25                      | .35         |  |
|                                              | GT 5 yrs-10 yrs                              | .15                    | .099       | .525 | 12                      | .42         |  |

Based on observed means.

The error term is Mean Square(Error) = .944.

\*. The mean difference is significant at the .05 level.

# **6. Associations Between Variables**

# **Business context**

Testing for associations between variables is quite common with survey data:

- We might want to learn how a customer's age is related to the number of purchases they have made, or the total revenue from those purchases.
- In a survey of patients, we might want to learn whether satisfaction is higher physicians is correlated with overall satisfaction.

# **Using Scatterplots to Examine Relationships**



# **Remove Outlier and create chart again**

value



Select Cases

medv < 60 (FILTE...</p>

X

# **Correlations Coefficient**

### Analyze >> Correlate >> Bivariate Correlations

#### 🔚 Bivariate Correlations



|                                | Correlations        |                                                    |                                                                |
|--------------------------------|---------------------|----------------------------------------------------|----------------------------------------------------------------|
|                                |                     | lower status<br>of the<br>population<br>(percent). | median value<br>of owner-<br>occupied<br>homes in<br>\\$1000s. |
| lower status of the            | Pearson Correlation | 1                                                  | 738                                                            |
| population (percent).          | Sig. (2-tailed)     |                                                    | .00                                                            |
|                                | N                   | 506                                                | 50                                                             |
| median value of owner-         | Pearson Correlation | 738                                                |                                                                |
| occupied homes in<br>\\$1000s. | Sig. (2-tailed)     | .000                                               |                                                                |
|                                | N                   | 506                                                | 50                                                             |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

Х

Flag significant correlations Show only the lower triangle Show diagonal

# 7. Regression Analysis

# **Business context**

Multivariate regression is the basic technique used to create models to predict an outcome or dependent variable. It is used in almost all industries.

- Models can be developed to predict customer satisfaction based on rating of various aspects of product/services
- Models can be developed to predict customer revenue based on previous revenue and other customer characteristics.

# Non linear correlation

### Analyze >> Regression >> Linear

| Model Summary |                                                                                                                 |      |      |        |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------|------|------|--------|--|--|--|--|--|
| Model         | Adjusted R         Std. Error of           Model         R         R Square         Square         the Estimate |      |      |        |  |  |  |  |  |
| 1             | .738 <sup>a</sup>                                                                                               | .544 | .543 | 6.2158 |  |  |  |  |  |

 a. Predictors: (Constant), lower status of the population (percent).

#### Coefficients<sup>a</sup>

|       |                                           | Unstandardize | d Coefficients | Standardized<br>Coefficients |         |      |
|-------|-------------------------------------------|---------------|----------------|------------------------------|---------|------|
| Model |                                           | В             | Std. Error     | Beta                         | t       | Sig. |
| 1     | (Constant)                                | 34.554        | .563           |                              | 61.415  | .000 |
|       | lower status of the population (percent). | 950           | .039           | 738                          | -24.528 | .000 |

a. Dependent Variable: median value of owner-occupied homes in \\$1000s.



Seetter Flet effewer status of the population (percent), by median value of ewner-secupied homes in \$1000

2 Iner - 134

median value of owner-occupied homes in \$1000s.

# Which line is the best fit?

### Analyze >> Regression >> Curve Estimate

the Curve Estimation

#### Dependent(s) Per capita crime rate by town. [crim] Some dian value of owner-occupied homes in \\$1... 4 Proportion of residential land zoned for lots ov.. I proportion of non-retail business acres per to... River dummy variable (= 1 if tract bou... Independent nitrogen oxides concentration (parts per 10 m... O Variable: A average number of rooms per dwelling. [rm] Iower status of the population (percent). [Istat] Sproportion of owner-occupied units built prior t... O Ti<u>m</u>e I weighted mean of distances to five Boston e... index of accessibility to radial highways. [rad] Case Labels: Include constant in equation ✓ full-value property-tax rate per \\$10,000. [tax] • Plot models pupil-teacher ratio by town. [ptratio] Models 1000(Bk - 0.63)<sup>2</sup> where Bk is the proportion . Linear Quadratic Compound Growth Redv < 60 (FILTER) [filter \$] Logarithmic Cubic Exponential Logistic Inverse Power: Upper bound: Display ANOVA table



#### Model Summary and Parameter Estimates

Dependent Variable: median value of owner-occupied homes in \\$1000s.

| Model Summary |          |         |     | Parameter Estimates |      |          |        |      |     |
|---------------|----------|---------|-----|---------------------|------|----------|--------|------|-----|
| Equation      | R Square | F       | df1 | df2                 | Sig. | Constant | b1     | b2   | b3  |
| Linear        | .544     | 601.618 | 1   | 504                 | .000 | 34.554   | 950    |      |     |
| Quadratic     | .641     | 448.505 | 2   | 503                 | .000 | 42.862   | -2.333 | .044 |     |
| Cubic         | .658     | 321.728 | 3   | 502                 | .000 | 48.650   | -3.866 | .149 | 002 |

The independent variable is lower status of the population (percent)...

# **Stepwise Regression**

tinear Regression

#### per capita crime rate by town. [crim] proportion of residential land zoned for lots over 25,0... Block 1 of 1 Section of non-retail business acres per town. [in... Previous Charles River dummy variable (= 1 if tract bounds riv... nitrogen oxides concentration (parts per 10 million). ... Independent(s): A average number of rooms per dwelling. [rm] proportion of owner-occupied units built prior to 194... Sweighted mean of distances to five Boston employm... index of accessibility to radial highways. [rad] full-value property-tax rate per \\$10,000. [tax] + pupil-teacher ratio by town. [ptratio] 1000(Bk - 0.63)<sup>2</sup> where Bk is the proportion of blac... Iower status of the population (percent). [Istat] medv < 60 (FILTER) [filter \$]</p> Method: Selection Variable: • Case Labels: • WLS Weight:

#### Dependent:

•



| woder Summary |                   |          |                      |                               |
|---------------|-------------------|----------|----------------------|-------------------------------|
| Model         | R                 | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate |
| 1             | .738 <sup>a</sup> | .544     | .543                 | 6.2158                        |
| 2             | .799 <sup>b</sup> | .639     | .637                 | 5.5403                        |
| 3             | .824°             | .679     | .677                 | 5.2294                        |
| 4             | .831 <sup>d</sup> | .690     | .688                 | 5.1386                        |
| 5             | .841 <sup>e</sup> | .708     | .705                 | 4.9939                        |
| 6             | .846 <sup>f</sup> | .716     | .712                 | 4.9326                        |
| 7             | .850 <sup>9</sup> | .722     | .718                 | 4.8818                        |
| 8             | .852 <sup>h</sup> | .727     | .722                 | 4.8474                        |
| 9             | .854 <sup>i</sup> | .729     | .724                 | 4.8326                        |
| 10            | .857 <sup>j</sup> | .734     | .729                 | 4.7895                        |
| 11            | .861 <sup>k</sup> | .741     | .735                 | 4.7362                        |

Model Summary

